Antioxidative Effect of Dietary Flavonoid Isoquercitrin on Human Ovarian Granulosa Cells HGL5 In Vitro

Author:

KOLESAROVA A1,MICHALCOVA K1,ROYCHOUDHURY S2,BALDOVSKA S3,TVRDA E1,VASICEK J1,CHRENEK P1,SANISLO L,KREN V4

Affiliation:

1. Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic

2. Department of Life Science and Bioinformatics, Assam University, Silchar, India

3. AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic

4. Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic

Abstract

This study aimed to examine the effect of dietary flavonoid isoquercitrin on ovarian granulosa cells using the immortalized human cell line HGL5. Cell viability, survival, apoptosis, release of steroid hormones 17β-estradiol and progesterone, and human transforming growth factor-β2 (TGF-β2) and TGF-β2 receptor as well as intracellular reactive oxygen species (ROS) generation were investigated after isoquercitrin treatment at the concentration range of 5-100 μg.ml-1. It did not cause any significant change (p>0.05) in cell viability as studied by AlamarBlue assay in comparison to control. No significant change was observed (p>0.05) in the proportion of live, dead and apoptotic cells as revealed by apoptotic assay using flow cytometry. Similarly, the release of 17β-estradiol, progesterone, TGF-β2 and its receptor were not affected significantly (p>0.05) by isoquercitrin as detected by ELISA, in comparison to control. Except for the highest concentration of 100 μg.ml-1, which led to oxidative stress, isoquercitrin exhibited antioxidative activity at lower concentration used in the study (5, 10, 25, and 50 μg.ml-1) by hampering the production of intracellular ROS, in comparison to control, as detected by chemiluminescence assay (p<0.05). Findings of the present study indicate an existence of the antioxidative pathway that involves inhibition of intracellular ROS generation by isoquercitrin in human ovarian granulosa cells.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3