Affiliation:
1. Institute of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
Abstract
Experimental studies in animals provide relevant knowledge about pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced injury can alter neuronal, glial cell population, brain vasculature and may lead to molecular, cellular and functional consequences. Regarding to its fundamental role in the formation of new memories, spatial navigation and adult neurogenesis, the majority of studies have focused on the hippocampus. Most recent findings in cranial radiotherapy revealed that hippocampal avoidance prevents radiation-induced cognitive impairment of patients with brain primary tumors and metastases. However, numerous preclinical studies have shown that this problem is more complex. Regarding the fact, that the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is highly important to investigate molecular, cellular and functional changes in different brain regions and their integration at clinically relevant doses and schedules. Here, we provide a literature review in order support the translation of preclinical findings to clinical practice and improve the physical and mental status of patients with brain tumors.
Funder
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
Publisher
Institute of Physiology of the Czech Academy of Sciences
Subject
General Medicine,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献