Affiliation:
1. Department of Medical and Clinical Biophysics, Faculty of Medicine, of P. J. Šafárik University in Košice, Košice, Slovakia. jan.sabo@upjs.sk
Abstract
The laser radiation absorbed by cells induces production of reactive oxygen species (ROS), followed by the development of oxidative stress. Proteins are major targets for ROS due to their abundance in biological systems. The aim of the present pilot study was to examine the effects of transcutaneous laser blood irradiation (TLBI), i.e., low-level laser therapy (LLLT) at 830 nm on plasma proteome in Wistar rats. Rats were irradiated in the heart area (i.e. coronary arteries) daily (i.e., for 9-day period), by commercially available GaAsAl diode laser (Maestro/CCM, Medicom Prague, Czech Republic, λ=830 nm, power density 450mW/cm2, daily dose 60,3 J/ cm(2), irradiation time 134 sec). The comparison of blood plasma proteome from irradiated and non-irradiated rats was performed utilizing 2D electrophoresis followed by MALDI TOF/TOF mass spectrometry. LLLT led to a quantitative change in the acute phase proteins with antioxidant protection i.e., haptoglobin (log2 fold change (FC)=3.5), hemopexin (log2 FC=0.5), fibrinogen gamma (log2 FC=1.4), alpha-1-antitrypsin (log2 FC=-2.2), fetuin A (log2 FC=-0.6) and fetuin B (log2 FC=-2.3). In comparison to conventional biochemical methods, the changes in protein levels in blood plasma induced by LLLT offer a deeper insight into the oxidative stress response.
Publisher
Institute of Physiology of the Czech Academy of Sciences
Subject
General Medicine,Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献