Inhibition of Extracellular Signal-Regulated Kinase Downregulates Endoplasmic Reticulum Stress-Induced Apoptosis and Decreases Brain Injury in a Cardiac Arrest Rat Model

Author:

YUAN Z-L1,ZHANG Z-X2,MO Y-Z3,LI D-L4,XIE L4,CHEN M-H3

Affiliation:

1. Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China

2. Intensive Care Unit, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China

3. Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China

4. Department of Physiology, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China

Abstract

Cerebral ischemia-reperfusion injury (CIRI) is the predominant cause of neurological disability after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The endoplasmic reticulum stress (ERs)-induced apoptosis plays an important role in neuronal survival/death in CIRI. Our previous studies reported that the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, alleviates CIRI after CA/CPR. Whether ERs-induced apoptosis is involved in the neuroprotection of PD98059 remains unknown. This study aims to investigate the effects of ERK inhibition by PD98059 on ERs-induced apoptosis after CIRI in the CA/CPR rat model. The baseline characteristics of male adult Sprague-Dawley (SD) rats in all groups were evaluated before CA/CPR. The SD rats that survived from CA/CPR were randomly divided into 3 groups (n=12/group): normal saline group (1 ml/kg), dimethylsulfoxide (DMSO, the solvent of PD98059, 1 ml/kg) group, PD98059 group (0.3 mg/kg). Another 12 SD rats were randomly selected as the Sham group. Twenty-four hours after resuscitation, neural injury was assessed by survival rate, neurological deficit scores (NDS) and Nissl staining; apoptosis of brain cells was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining; mRNA expression and protein levels of ERs-related protein BIP, PERK, ATF4 and CHOP were checked with RT-PCR and Western Blot. The results showed that there were no significant differences in baseline characteristics before CA/CPR among all groups. PD98059 significantly improved survival rate and NDS, increased the Nissl bodies in neurons, reduced apoptosis, downregulated the mRNA transcription and expression levels of BIP, PERK, ATF4 and CHOP at 24 h after CA/CPR. Our results demonstrate that inhibition of ERK by PD98059 alleviates ERs-induced apoptosis via BIP-PERK-ATF4-CHOP signaling pathway and mitigates CIRI in the CA/CPR rat model.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3