The Interaction of Quaternary Reversible Acetylcholinesterase Inhibitors With the Nicotinic Receptor

Author:

SEPSOVA V.,KRUSEK J.,ZDAROVA KARASOVA J.,ZEMEK F.,MUSILEK K.,KUCA K.,SOUKUP O.1

Affiliation:

1. Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic

Abstract

Acetylcholinesterase inhibitors (AChEIs) are used in the treatment of myasthenia gravis (MG). We investigated the effects of AChEIs on peripheral nicotinic receptors (nAChR), which play a crucial role in the treatment of MG symptoms. The positive modulation of those receptors by AChE inhibitors could have an added value to the anti-AChE activity and might be useful in the therapy of MG. Furthermore, to estimate the potential drawbacks of the compounds, cytotoxicity has been assessed on various cell lines. The whole-cell mode of the patch-clamp method was employed. The experiments were performed on medulloblastoma/rhabdomyosarcoma cell line TE671 expressing human embryonic muscle-like receptor with subunits α2βγδ. The effect of the compounds on cell viability was measured by standard MTT assay (Sigma Aldrich) on ACHN (renal cell adenocarcinoma), HeLa (immortal cell line derived from a cervical carcinoma), HEPG2 (hepatocellular carcinoma) and BJ (skin fibroblasts) cell lines. No positive modulation by the tested AChE inhibitors was observed. Moreover, the compounds exhibited antagonistic activity on the peripheral nAChR. Standard drugs used in MG treatment were shown to be less potent inhibitors of muscle-type nAChR than the newly synthesized compounds. The new compounds showed very little effect on cell viability, and toxicities were comparable to standards. Newly synthesized AChEIs inhibited peripheral nAChR. Furthermore, the inhibition was higher than that of standards used for the treatment of MG. They could be used for the study of nAChR function, thanks to their high antagonizing potency and fast recovery of receptor activity after their removal. However, since no positive modulation was observed, the new compounds do not seem to be promising candidates for MG treatment, even though their cytotoxic effect was relatively low.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3