Effect of an Inhibitor of Neuronal Nitric Oxide Synthase 7-Nitroindazole on Cerebral Hemodynamic Response and Brain Excitability in Urethane-Anesthetized Rats

Author:

BROŽÍČKOVÁ C.,OTÁHAL J.1

Affiliation:

1. Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Abstract

The role of neuronal nitric oxide synthase (nNOS) in the pathophysiology of epilepsy and seizures remains disputable. One of the reasons why results from the acute in vivo studies display controversies might be the effect on the regulation of cerebral blood flow (CBF) during pharmacologically induced alterations of NO system. We examined neurovascular coupling in the rat sensorimotor cortex in response to transcallosal stimulation under nNOS inhibition by 7-nitroindazole (7-NI). Adult Wistar rats were anesthetized with urethane and epidural silver EEG electrodes were implanted over sensorimotor cortices. Regional CBF was measured by Laser Doppler Flowmetry (LDF). We catheterized a common carotid artery to measure arterial blood pressure (BP). 7-NI did not significantly affect blood pressure and heart rate. Electrophysiological recordings of evoked potentials (EPs) revealed no effect on their amplitude, rhythmic potentiation or depression of EPs. Transcallosal stimulation of the contralateral cortex induced a frequency dependent rise in CBF. Although 7-NI did not significantly affect basal CBF and cortical excitability, hemodynamic responses to the transcallosal stimulation were diminished implicating a role of nNOS in neurovascular coupling. Urethane anesthesia is suitable for future epileptological experiments. Our findings demonstrate that NO contributes to the hemodynamic response during brain activation.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3