Affiliation:
1. Department of Membrane Transport Biophysics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
Abstract
Research on brown adipose tissue and its hallmark protein, mitochondrial uncoupling protein UCP1, has been conducted for half a century and has been traditionally studied in the Institute of Physiology (AS CR, Prague), likewise UCP2 residing in multiple tissues for the last two decades. Our group has significantly contributed to the elucidation of UCP uncoupling mechanism, fully dependent on free fatty acids (FFAs) within the inner mitochondrial membrane. Now we review UCP2 physiological roles emphasizing its roles in pancreatic β-cells, such as antioxidant role, possible tuning of redox homeostasis (consequently UCP2 participation in redox regulations), and fine regulation of glucose-stimulated insulin secretion (GSIS). For example, NADPH has been firmly established as being a modulator of GSIS and since UCP2 may influence redox homeostasis, it likely affects NADPH levels. We also point out the role of phospholipase iPLA2 isoform in providing FFAs for the UCP2 antioxidant function. Such initiation of mild uncoupling hypothetically precedes lipotoxicity in pancreatic β-cells until it reaches the pathological threshold, after which the antioxidant role of UCP2 can be no more cell-protective, for example due to oxidative stress-accumulated mutations in mtDNA. These mechanisms, together with impaired autocrine insulin function belong to important causes of Type 2 diabetes etiology.
Publisher
Institute of Physiology of the Czech Academy of Sciences
Subject
General Medicine,Physiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献