Hepatocyte Transplantation Attenuates the Course of Acute Liver Failure Induced by Thioacetamide in Lewis Rats

Author:

KOBLIHOVÁ E.,LUKŠAN O.,MRÁZOVÁ I.,RYSKA M.,ČERVENKA L.1

Affiliation:

1. Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic

Abstract

Acute liver failure (ALF) is a clinical syndrome resulting from widespread damage of hepatocytes, with extremely high mortality rate. Urgent orthotopic liver transplantation was shown to be the most effective therapy for ALF but this treatment option is limited by scarcity of donor organs. Therefore, hepatocyte transplantation (Tx) has emerged as a new therapeutical measure for ALF, however, the first clinical applications proved unsatisfactory. Apparently, extensive preclinical studies are needed. Our aim was to examine if hepatocytes isolated from transgenic “firefly luciferase” Lewis rats into the recipient liver would attenuate the course of thioacetamide (TAA)-induced ALF in Lewis rats. Untreated Lewis rats after TAA administration showed a profound decrease in survival rate; no animal survived 54 h. The rats showed marked increases in plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, in plasma level of bilirubin and ammonia (NH3), and in a significant decrease in plasma albumin. Hepatocyte Tx attenuated the course of TAA-induced ALF Lewis rats which was reflected by improved survival rate and reduced degree of liver injury showing as lowering of elevated plasma ALT, AST, NH3 and bilirubin levels and increasing plasma albumin. In addition, bioluminescence imaging analyses have shown that in the TAA damaged livers the transplanted hepatocyte were fully viable throughout the experiment. In conclusion, the results show that hepatocyte Tx into the liver can attenuate the course of TAA induced ALF in Lewis rats. This information should be considered in attempts to develop new therapeutic approaches to the treatment of ALF.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3