The effects of KT ≠ KS in a Stommel-like model of the upper Atlantic Meridional Overturning Circulation under steady surface flux forcing

Author:

Gargett A.E.

Abstract

This study examines a simple 6-box model of a single pole-to-pole ocean basin. Each of a northern "polar gyre," a southern "polar gyre," and an "equatorial gyre," consisting of north and south subtropical gyres plus the equatorial region, is represented by two boxes: a surface box receiving constant fluxes of both temperature (heat) and salt (freshwater) and a deep box. The model includes four dominant processes: surface flux forcing, horizontal meridional advection driven by Southern Ocean winds, horizontal eddy diffusion at gyre boundaries, and convection, as well as the process of vertical diffusion by small-scale processes. Provided that heat loss from the northern polar gyre is sufficiently larger than that from the southern polar gyre, a steady-state Atlantic Meridional Overturning Circulation (AMOC)-like system, i. e., one with sinking in the north polar gyre and upwelling in a weakly stratified southern polar gyre, is obtained at present values of RF ≡ βFS / αFT, the ratio of surface forcing by fluxes of temperature (T ) and salinity (S ) in the equatorial gyre. Despite the fact that vertical diffusive fluxes are much smaller than those associated with all the other processes, it is shown that implementation in this model of a simple water mass–based representation of different vertical diffusivities for T and S, the two water properties that, with pressure, determine the density of seawater, can lead to profound change in the steady-state modes of the system. With equal diffusivities, the AMOC-like mode with north polar convection shifts abruptly to a mode with equatorial convection at sufficiently large values of RF. With unequal diffusivities, this mode boundary is replaced by an intermediate region of RF values in which all three gyres are stratified. The existence and extent of this stratified regime is shown to result predominantly from the differences between vertical turbulent diffusivities of T and S in the "salt fingering" equatorial gyre. Existence of a stratified regime at values of RF somewhat larger that present implies a tendency towards stable stratification throughout the oceans if, under climate change, the equatorial diffusivity difference were to increase as a result of water mass changes in the subtropical gyres and/or an increase in RF as a result of increased atmospheric freshwater fluxes and/or decreased heat fluxes. This tendency towards an everywhere-stratified ocean is independent of that expected from increased freshwater addition to surface polar oceans due to ice melt.

Publisher

Journal of Marine Research/Yale

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3