Prediction of Electrical Energy Consumption Using LSTM Algorithm with Teacher Forcing Technique

Author:

Riady Sasmitoh Rahmad, ,Sen Tjong Wan,

Abstract

Electrical energy is an important foundation in world economic growth, therefore it requires an accurate prediction in predicting energy consumption in the future. The methods that are often used in previous research are the Time Series and Machine Learning methods, but recently there has been a new method that can predict energy consumption using the Deep Learning Method which can process data quickly for training and testing. In this research, the researcher proposes a model and algorithm which contained in Deep Learning, that is Multivariate Time Series Model with LSTM Algorithm and using Teacher Forcing Technique for predicting electrical energy consumption in the future. Because Multivariate Time Series Model and LSTM Algorithm can receive input with various conditions or seasons of electrical energy consumption. Teacher Forcing Technique is able lighten up the computation so that it can training and testing data quickly. The method used in this study is to compare Teacher Forcing LSTM with Non-Teacher Forcing LSTM in Multivariate Time Series model using several activation functions that produce significant differences. TF value of RMSE 0.006, MAE 0.070 and Non-TF has RMSE and MAE values of 0.117 and 0.246. The value of the two models is obtained from Sigmoid Activation and the worst value of the two models is in the Softmax activation function, with TF values is RMSE 0.423, MAE 0.485 and Non-TF RMSE 0.520, MAE 0.519.

Publisher

Universitas Trilogi

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multivariate time series with Prophet Facebook and LSTM algorithm to predict the energy consumption;2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE);2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3