Author:
Adeel Ahsan,Larijani Hadi,Javed Abbas,Ahmadinia Ali
Abstract
This paper presents an application of context-aware decision making to the problem of radio resource management (RRM) and inter-cell interference coordination (ICIC) in long-term evolution-uplink (LTE-UL) system. The limitations of existing analytical, artificial intelligence (AI), and machine learning (ML) based approaches are highlighted and a novel integration of random neural network (RNN) based learning with genetic algorithm (GA) based reasoning is presented. In first part of the implementation, three learning algorithms (gradient descent (GD), adaptive inertia weight particle swarm optimization (AIWPSO), and differential evolution (DE)) are applied to RNN and two learning algorithms (GD and levenberg-marquardt (LM)) are applied to artificial neural network (ANN). In second part of the implementation, the GA based reasoning is applied to the trained ANN and RNN models for performance optimization. Finally, the ANN and RNN based optimization results are compared with the state-of-the-art fractional power control (FPC) schemes in terms of user throughput and power consumption. The simulation results have revealed that an RNN-DE (RNN trained with DE algorithm) based cognitive engine (CE) can provide up to 14% more cell capacity along with 6dBm and 9dBm less user power consumption as compared to RNN-GD (RNN trained with GD algorithm) and FPC methods respectively.
Publisher
Macrothink Institute, Inc.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献