The Potential of Temporary Immersion Bioreactors (TIBs) in Meeting Crop Production Demand in Nigeria

Author:

Lyam Paul Terwase,Musa Mutah Lalai,Jamaleddine Zainab O,Okere Ugochukwu Anthony,Odofin Wasiu Tiwalade

Abstract

Micropropagation, popularly known for large-scale clonal propagation, is the first major and widely accepted practical application of plant biotechnology. The commercial utility of conventional micropropagation of important crop species is limited as a result of the large numbers needed annually to start up new farms in addition to high production costs. These result primarily from high labour cost, low multiplication rate or long duration of multiplication before plantlets are taken to the field, and poor survival rates resulting from contamination risks and during acclimatization. All of these constitute a major setback in the use of Micropropagation for scaling up of the several economic species for commercialization. Temporary Immersion Bioreactor system (TIBs) is a relatively recent micropropagation procedure that employs the use of automated gadgets to control rapid multiplication of plant cultures under adequate conditions. TIBs provide a more precise control of the adequate conditions (gaseous exchange, illumination etc.) required by plants for growth, development and survival than the conventional culture vessels. This bioreactor system incorporates a number of features specifically designed to simplify its operation and reduce production costs. The set-up consists of two vessels, one for the plantlets and the other one for the liquid culture media coupled together through a perforated rubber tubing that permits the flow of the liquid media from one vessel to the other. TIBs consist of three main phases: Multiplication, Elongation and Rooting phase. Plantlets propagated in TIBs have better performance than those propagated by conventional methods of micropropagation. This is as a result of a better handling of the in vitro atmosphere and the nutrition. TIBs provide a rapid and efficient plant propagation system for many agricultural and forestry species, utilizing liquid media to avoid intensive manual handling.  In addition to diminishing production costs regarding labour force, Temporary Immersion Bioreactors save energy, augment micropropagation productivity and efficiency.

Publisher

Macrothink Institute, Inc.

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3