Affiliation:
1. Universitat Politècnica de València
Abstract
The ability to manipulate waves has long been one of the main goals in various areas of physics and engineering. Many-body scattering systems [1] and metamaterials [2] offer promising prospects to deal with this challenge due to their ability to be tuned and reconfigured. Properly designed highly disordered many-body systems have recently attracted attention as a tool for scattering manipulation. The introduction of local correlations between the positions of the scatterers constituting the disordered system allows to control the scattering of an incident radiation [3, 4, 5, 6, 7]. In particular, stealth materials consist of multiple scatterers distributed a way that completely suppress the scattering of the sample over a broadband frequency range [8, 9]. In this work, we develop a route to engineer acoustic materials consisting of multiple scatterers, which possess the desired scattering properties under the incidence of a plane wave. We characterize the scattering pattern of a set of scatterers under the approach of weak scattering by its structure factor. We validate this hypothesis calculating the scattered far-field amplitude using the multiple scattering theory that considers all scattering orders. We develop an optimization technique, which optimizes the positions of scatterers that lead to a chosen value of the structure factor over a given frequency range.Acknowledgements: Author is grateful for the partial support under Grant No. PID2020-112759GB-I00 funded by MCIN/AEI/10.13039/501100011033 and from Grant No. CIAICO/2022/052 of the “Programa para la promoción de la investigación científica, el desarrollo tecnológico y la innovación en la Comunitat Valenciana” funded by Generalitat Valenciana.
Funder
Generalitat Valenciana
Ministerio de Ciencia e Innovación