Elastic wave propagation in cubic non-centrosymmetric and chiral architectured materials: insights from strain gradient elasticity

Author:

Rosi Giuseppe1ORCID

Affiliation:

1. Université Paris-Est Créteil

Abstract

The study of elastic wave propagation is a fundamental tool in different fields, from Non-destructive Damage Evaluation (NDE) to ultrasonic imaging. Usually NDE and characterisation techniques rely on inversion methods based on homogenised theories, that are valid only when the wavelength of the perturbation is considerably larger than the characteristic size of the heterogeneities of the materials. When the wavelength approaches this characteristic size, an upscaling occurs and mesoscopic effects can be transferred to the macro-scale. In this case, classic models used in the aforementioned inversion procedures can fail to predict the correct response [1] and they need to be improved [2]. In this work, we address those architectures for which the unit cell does not have any centre of inversion (non-centrosymmetric) nor symmetry plane (chiral). It will be shown that unconventional effects, in terms of dispersion and polarisation, can be observed even for large wavelengths. We will also prove that for describing these materials using an equivalent homogeneous continuum, the use of an enriched or generalized theory, such as strain gradient elasticity, is mandatory. Moreover, the analysis of the generalised acoustic (or Christoffel) tensor defined in this framework can give a useful insight on the dynamic features of the architectured material. Among others, the example of the gyroid unit cell will be detailed.

Funder

Agence Nationale de la Recherche

Conseil National de la Recherche Scientifique

Publisher

Cassyni

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3