Heat equations beyond Fourier: from heat waves to thermal metamaterials

Author:

Kovács Róbert12ORCID

Affiliation:

1. Budapest University of Technology and Economics

2. Wigner Research Centre for Physics

Abstract

In the past few decades, numerous heat conduction models extending beyond Fourier's have been developed to account for large gradients, fast phenomena, wave propagation, and heterogeneous material structures typical of biological systems, superlattices, and thermal metamaterials. Navigating through these models has become challenging due to their varying thermodynamic backgrounds and potential compatibility issues. Furthermore, recent discoveries in the field of non-Fourier heat conduction have complicated the interpretation and utilization of specific non-Fourier heat equations, especially when designing materials for the new generation of thermal metamaterials. The situation is further compounded by the existence of numerous modeling strategies in the literature, each offering different interpretations of even the same heat equation. This complexity makes it increasingly difficult to gain a comprehensive understanding of this research field. Therefore, this review aims to facilitate the navigation of advanced heat equations beyond Fourier by discussing their properties and potential practical applications in the context of experiments. We begin with the simplest models and their fundamental principles, progressing toward more complex, coupled phenomena, such as ballistic heat conduction.We do not delve into the often intricate technical details of each thermodynamic framework or aim to compare each approach from a methodological perspective. Instead, we focus on reviewing models primarily from the Rational Extended Thermodynamics, Extended Irreversible Thermodynamics, and Non-Equilibrium Thermodynamics with Internal Variables frameworks. Additionally, we discuss relevant models from kinetic theory, fractional derivatives, thermomass, and phase lag approaches. We provide background information on these models to highlight their origins, any limitations they may have, and the corresponding stability conditions, if applicable. Furthermore, as the field of non-Fourier heat conduction has become quite segmented, this paper also seeks to establish a common foundation, promoting a comprehensive mutual understanding of the fundamentals of each model and the phenomena to which they can be applied.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Cassyni

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3