Active control of compressible supersonic wall-bounded flow using direct numerical simulations with spanwise velocity modulation at the walls using PyFR

Author:

Foysi Holger1

Affiliation:

1. University of Siegen

Abstract

Active turbulence control has been pursued continuously for quite some time already. In this talk, our focus is on a promising method inducing a spanwise wall movement in order to reduce turbulence intensity and hence friction drag, investigated by means of direct numerical simulation. Most procedures related to turbulence control including the present one have been overwhelmingly applied to incompressible flow. This work is different and novel to the effect, that this control method is applied to compressible, supersonic channel flow up to a bulk Mach number of Ma = 3. Due to substantial variations of viscosity, density, and temperature within the near-wall region in supersonic flow, the impact of the control method is altered compared to solenoidal flow conditions. By creating a data set of different Mach-/Reynolds numbers and control parameters, knowledge is gained in which way the effectiveness of oscillatory techniques and physical mechanisms can change under the influence of compressibility. It is shown that the control method is able to effectively reduce turbulence levels and lead to large drag reduction levels in compressible supersonic flow. Variable property effects even enhance this behaviour for the whole set of investigated parameters. Overall, the higher Mach number cases show a larger net power saving compared to the incompressible ones. Furthermore, we observe an increase of the optimum wavelength with increasing Mach number, which helps in guiding optimal implementations of such a control method.

Publisher

Cassyni

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3