Thermodynamics of unfolding mechanisms of pseudoknotted RNA from a coarse-grained loop-entropy model and absorbance/fluorescence measurements

Author:

Liang Jie1

Affiliation:

1. University of Illinois at Chicago

Abstract

Pseudoknotted RNA molecules play important biological roles that depend on their folded structure. To understand the underlying principles that determine their thermodynamics and folding/unfolding mechanisms, we carried out a study on a variant of the mouse mammary tumor virus pseudoknotted RNA (VPK), a widely studied model system for RNA pseudoknots. Our method is based on a coarse-grained discrete-state model and the algorithm of PK3D (pseudoknot structure predictor in three-dimensional space), with RNA loops explicitly constructed and their conformational entropic effects incorporated. Our loop entropy calculations are validated by accurately capturing previously measured melting temperatures of RNA hairpins with varying loop lengths. For each of the hairpins that constitutes the VPK, we identified alternative conformations that are more stable than the hairpin structures at low temperatures and predicted their populations at different temperatures. Our predictions were validated by thermodynamic experiments on these hairpins. We further computed the heat capacity profiles of VPK, which are in excellent agreement with available experimental data. Notably, our model provides detailed information on the unfolding mechanisms of pseudoknotted RNA. Analysis of the distribution of base-pairing probability of VPK reveals a cooperative unfolding mechanism instead of a simple sequential unfolding of first one stem and then the other. Specifically, we find a simultaneous “loosening” of both stems as the temperature is raised, whereby both stems become partially melted and co-exist during the unfolding process. (Joint work with Ke Tang, Jorjethe Roca, Rong Chen and Anjum Ansari)

Funder

National Institutes of Health

Publisher

Cassyni

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3