Frustrated Bearings

Author:

Herrmann Hans Jürgen1

Affiliation:

1. Universidade Federal do Ceará

Abstract

A bearing is a system of spheres (or disks) in contact. If in a bearing every loop is even, one can obtain “bearing states”, in which touching spheres roll on each other without slip. We frustrate a system of touching spheres by imposing two different bearing states on opposite sides and search for the configurations of lowest energy dissipation. For Coulomb friction (with random friction coefficients) in two dimensions, a sharp line separates the two bearing states and we prove that this line corresponds to the minimum cut. Astonishingly however, in three dimensions, intermediate bearing domains, that are not synchronized with either side, are energetically more favourable than the minimum-cut surface. This novel state of minimum dissipation is characterized by a spanning network of slip-less contacts that reaches every sphere. Such a situation becomes possible because in three dimensions bearings of loops of size four have four degrees of freedom. By considering spheres of different size, packings with bearing states can even be made space-filling. The construction and mechanical properties of such space-filling bearings will be discussed. Space-filling bearing states can be viewed as a realization of solid turbulence exhibiting Kolmogorov scaling and anomalous heat conduction. Bearings states can be perceived as physical realizations of networks of oscillators with asymmetrically weighted couplings. These networks can exhibit optimal synchronization properties through tuning of the local interaction strength as a function of node degree or the inertia of their constituting rotor disks through a power-law mass-radius relation. As a consequence, one finds that space filling bearings synchronize fastest, when they are hollow.

Publisher

Cassyni

Reference1 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3