Complex tidal flow interactions in stellar and planetary convective envelopes

Author:

Astoul Aurélie1ORCID

Affiliation:

1. University of Leeds

Abstract

In close star/star or star/planet systems, tidal interactions are known to shape the orbital architecture of the system, and modify the star and planet spins. Most stars around which planets have been discovered are low-mass solar-type stars, and thus feature a magnetised and often differentially-rotating convective envelope, as is also expected in giant gaseous planets. The dissipation of tidal flows, and more specifically the dissipation of inertial waves (restored by the Coriolis acceleration) is of particular importance in the convective envelopes, especially in the early stages of the life of an exoplanetary system. In parallel, the non-linear self-interactions of inertial waves are able to trigger differential rotation in convective shells in the form of axisymmetric zonal flows. In turn, linear numerical studies have shown that differential rotation can strongly affect the properties of inertial waves, namely their propagation and the dissipation of their kinetic energy.In this context, I will present our recent results of (magneto-)hydrodynamical non-linear numerical simulations of tidally-forced inertial waves, in 3D spherical convective shells. The emerging zonal flow strength and structure largely depend on the viscosity, tidal forcing amplitude and frequency. When strong, these flows deeply modify tidal dissipation rates from prior linear predictions. Moreover, we also find evidences of strong wave/wave and wave/zonal flow interactions leading to parametric and shear flow instabilities due to correlation resonances (when the Doppler-shifted frequency vanishes). Therefore, I will discuss to what extent these various non-linear effects disrupt the linear predictions for tides along the permissible forcing frequency range and for various viscosities, tidal amplitudes and size of the convective shells which are representative of the convective envelopes of low-mass stars and giant gaseous planets.

Publisher

Cassyni

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3