Veracity Roadmap: Is Big Data Objective, Truthful and Credible?

Author:

Lukoianova Tatiana,Rubin Victoria L.

Abstract

This paper argues that big data can possess different characteristics, which affect its quality. Depending on its origin, data processing technologies, and methodologies used for data collection and scientific discoveries, big data can have biases, ambiguities, and inaccuracies which need to be identified and accounted for to reduce inference errors and improve the accuracy of generated insights. Big data veracity is now being recognized as a necessary property for its utilization, complementing the three previously established quality dimensions (volume, variety, and velocity), But there has been little discussion of the concept of veracity thus far. This paper provides a roadmap for theoretical and empirical definitions of veracity along with its practical implications. We explore veracity across three main dimensions: 1) objectivity/subjectivity, 2) truthfulness/deception, 3) credibility/implausibility – and propose to operationalize each of these dimensions with either existing computational tools or potential ones, relevant particularly to textual data analytics. We combine the measures of veracity dimensions into one composite index – the big data veracity index. This newly developed veracity index provides a useful way of assessing systematic variations in big data quality across datasets with textual information. The paper contributes to the big data research by categorizing the range of existing tools to measure the suggested dimensions, and to Library and Information Science (LIS) by proposing to account for heterogeneity of diverse big data, and to identify information quality dimensions important for each big data type.

Publisher

University of Washington Libraries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3