Production of Hydrogen Molecule from Methane Molecule Amplified with Excitation of Anti-Symmetric Modes of Vibration

Author:

ERDOĞAN Sinan1ORCID

Affiliation:

1. SAKARYA ÜNİVERSİTESİ

Abstract

Some factors, such as pressure and temperature, affect the rate of chemical reactions. In addition, the activation energy barrier must be overcome for the reaction to be initiated. It can be preferred to overcome this barrier by using catalysts and preheating. The catalyst ensures that it obtains the energy to react quickly by transferring it to the reactants. Similarly, the translational, vibrational, and rotational energy levels of reactants can be increased by preheating. According to the kinetic molecular theory of gases, preheating increases the kinetic energies of the gases and the speed of their collision, so the reaction takes place faster. This study theoretically investigates possible reactions of methane that can occur with the effect of only vibrational energy levels. The vibrational excitation of the molecules affects the reaction rates, and the activation barrier is overcome with lower energies. Using laser-based techniques makes the excitation of well-defined vibrational modes possible. This study investigated inelastic collisions of a methane molecule with well-characterized energy levels in infrared spectroscopy with some gases and the vibrational energy transfers that occur in these collisions. The methane molecule is the simplest form of a molecular structure consisting of more than three atoms of hydrogen atoms, which play an essential role in combustion chemistry. It shows that C⸺H stretch excitation increases the reaction rate of methane (CH4) molecules.

Publisher

Sakarya University Journal of Science

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3