Adaptive Control of an Inverted Pendulum by a Reinforcement Learningbased LQR Method

Author:

YILDIRAN Uğur1ORCID

Affiliation:

1. YILDIZ TEKNİK ÜNİVERSİTESİ

Abstract

Inverted pendulums constitute one of the popular systems for benchmarking control algorithms. Several methods have been proposed for the control of this system, the majority of which rely on the availability of a mathematical model. However, deriving a mathematical model using physical parameters or system identification techniques requires manual effort. Moreover, the designed controllers may perform poorly if system parameters change. To mitigate these problems, recently, some studies used Reinforcement Learning (RL) based approaches for the control of inverted pendulum systems. Unfortunately, these methods suffer from slow convergence and local minimum problems. Moreover, they may require hyperparameter tuning which complicates the design process significantly. To alleviate these problems, the present study proposes an LQR-based RL method for adaptive balancing control of an inverted pendulum. As shown by numerical experiments, the algorithm stabilizes the system very fast without requiring a mathematical model or extensive hyperparameter tuning. In addition, it can adapt to parametric changes online.

Publisher

Sakarya University Journal of Science

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3