Evaluation of The Effect of Outer Skin Slope on Fire Safety in Double-Skin Façade Systems

Author:

YILDIZ Mehmet AkifORCID,BEYHAN Figen1ORCID

Affiliation:

1. GAZİ ÜNİVERSİTESİ

Abstract

In order to increase energy efficiency and user comfort, double skin façade designs are becoming increasingly popular in the built environment as an alternative to traditional façede and curtain walling systems. The vertical cavity between the outer and inner skins of double skin façade systems, which is critical for natural ventilation, can destroy the effectiveness of façade designs by creating fire hazards due to the creation of uninterrupted areas between spaces. It is essential for the sustainability of the buildings to make appropriate fire safety designs for the risks of spreading toxic gases released in a possible fire through the double skin façede cavity to monitor the design before the building is built and to take the necessary precautions. Therefore, that paper developed a numerical model using computational fluid dynamics to monitor the smoke propagation through the cavity of the double skin façade and the temperature changes in the building. As a contribution to the physical modeling studies of double skin façade systems in the literature, the effect of changing the slope of the outer skin on smoke propagation and temperature changes was investigated. A design model was created by developing 9 scenarios: 4 wide angles, 4 acute angles, and a right angle, each with an angle varying by 3 degrees. While acute-angle cavity designs increased the flue effect in the cavity and increased the direction speed and density of the smoke towards the cavity, wide-angle cavity designs reduced the ambient temperature.

Publisher

Sakarya University Journal of Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3