Affiliation:
1. KÜTAHYA DUMLUPINAR ÜNİVERSİTESİ
2. MANISA CELAL BAYAR UNIVERSITY
Abstract
In this study, SiC-reinforced aluminum matrix composites were powder metallurgically (PM) prepared and sintered using high-frequency induction system (HFIS). The samples with different ratios of SiC (wt.%10, 20 and 40) added to the aluminum matrix were sintered at 660, 800, and 1000 °C. In addition, Al/SiC composites were compared by sintering with the conventional sintering (CS) method under similar sintering conditions. The heating rate for the sintering process using HFIS was 500 °C/min, while the CS method used a heating rate of 10 °C/min. The effect of the temperature and SiC ratio on the density, hardness, phase structure, and microstructure of composites was investigated. The optimum sintering temperature was determined according to the SiC additive amount. When 10%, 20%, and 40% SiC by weight were added to the aluminum matrix in the sintering process with HFIS, the required sintering temperatures were determined as 660, 800, and 1000 °C, respectively. While new phases were not formed as a result of short-term HFIS sintering, a high-temperature Al4C3 phase was detected in CS sintering. HFIS sintered Al/SiC composite samples were obtained in Al and SiC phases with high density and hardness ranging from 43-118 HV. In the high-temperature sintering process with HFIS, the formation of Al4C3 was prevented and its physical and mechanical properties were improved.
Funder
Manisa Celal Byar University
Publisher
Sakarya University Journal of Science