Transition Gas Flow Between Two Parallel Plates with A Slit-Type Obstacle of Various Geometry by Event Driven Molecular Dynamics Simulation

Author:

KOÇ Mustafa1,KANDEMİR İlyas2,AKKAYA Volkan Ramazan3

Affiliation:

1. BEYKENT UNIVERSITY, VOCATIONAL SCHOOL, DEPARTMENT OF MECHANICAL AND METAL TECHNOLOGIES

2. GEBZE TECHNICAL UNIVERSITY, FACULTY OF AERONAUTICS AND ASTRONAUTICS

3. MUGLA SITKI KOCMAN UNIVERSITY, FACULTY OF TECHNOLOGY, DEPARTMENT OF ENERGY SYSTEMS ENGINEERING

Abstract

In this study, pressure-driven flow through a slit-type obstacle with various length (L) and height (H) placed in between two parallel plates was investigated by Event Driven Molecular Dynamics (EDMD) simulation. Mach number, temperature and pressure distributions were obtained along the channel in the transition regime. The change in these macroscopic properties and flow rate were examined for different cases created by changing Knudsen number (Kn) of the gas, the geometry of the slit and the outlet/inlet pressure ratio of the flow. Collision of gas molecules with plates and the obstacle were modeled with diffuse reflection boundary condition. The flow rate showed a sudden change in the transition regime and significant differences in the molecular regime depending on the pressure ratio. Except for the Kn, H and L dimensions were found to be effective in Mach disc formation. Pressure drops at the exit of the slit were shaped differently in normalized pressure profiles depending on Kn, H and L dimensions. In addition, the structure of the vortices formed at the entrance and exit of the slit varies depending on Kn. Some of the results obtained were confirmed to be consistent with the similar studies in the literature.

Publisher

Sakarya University Journal of Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3