The Abrasion Behaviour of X40CrMoV5-1 Steel Under Various Surface Treatments

Author:

Tóth László1,Kovács Tünde1,Nyikes Zoltán1,Umesh Mhatre2

Affiliation:

1. Óbudai University , Bánki Donát Faculty of Mechanical and Safety Engineering, Department of Materials Technology , Budapest , Hungary

2. Surface Modification Technologies Pvt. Ltd. Research and Developement La , India , Sativali Road Vasai Road- (East), Dist. Palghar, Maharashtra-401208

Abstract

Abstract For evolving a surface layer on the X40CrMoV5-1 steel, a plasma-nitridation and PVD coating process was applied. In our experiments, the samples were heat-treated (high-temperature hardening, annealed three times) and surface treatments (plasma-nitridation, PVD coating by TiAlN, duplex surface treating by plasma nitridation and after that, PVD coating TiAlN). After the heat treatments, we performed hardness tests and surface abrasion wear tests. The abrasion wear resistance of the specimens was studied in order to understand the heat treatment effects on abrasion behaviour. It was observed that the heat treatment and surface treatment process greatly influence the tool steel surface hardness and abrasion resistance behaviour. By plasma-nitridation the surface hardness doubled compared to the quenched surface hardness while the PVD coated TiAlN surface layer hardness is more than five times that of the hardened one. There was no relevant difference between the PVD coated (TiAlN) surface hardness and the duplex surface-treated hardness. On the basis of the results of the comparative abrasive wear tests, it can be concluded that the duplex surface treatment resulted in the greatest wear resistance..

Publisher

Acta Materialia Transylvanica

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3