Hybrid Rule-based and Optimization-driven Decision Framework for the Rapid Synthesis of End-to-End Optimal (E2EO) and Sustainable Pharmaceutical Manufacturing Flowsheets

Author:

Barhate Yash1,Casas-Orozco Daniel1,Laky Daniel J.1,Reklaitis Gintaras V.1,Nagy Zoltan K.1

Affiliation:

1. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States

Abstract

In this paper, a hybrid heuristic rule-based and deterministic optimization-driven process decision framework is presented for the analysis and optimization of process flowsheets for end-to-end optimal (E2E0) pharmaceutical manufacturing. The framework accommodates various operating modes, such as batch, semi-batch and continuous, for the different unit operations that implement each manufacturing step. To address the challenges associated with solving process synthesis problems using a simulation-optimization approach, heuristic-based process synthesis rules are employed to facilitate the reduction of the superstructure into smaller sub-structures that can be more readily optimized. The practical application of the framework is demonstrated through a case study involving the end-to-end continuous manufacturing of an anti-cancer drug, lomustine. Alternative flowsheet structures are evaluated in terms of the sustainability metric, E-factor while ensuring compliance with the required production targets and critical product quality attributes.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3