Biofuels with Carbon Capture and Storage in the United States Transportation Sector

Author:

Geissler Caleb H.12,Maravelias Christos T.123

Affiliation:

1. Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, USA

2. DOE Great Lakes Bioenergy Research Center, USA

3. Princeton University, Andlinger Center for Energy and the Environment, Princeton, New Jersey, USA

Abstract

There is a need to drastically reduce greenhouse gas emissions. While significant progress has been made in electrifying transport, heavy duty transportation and aviation are not likely to be capable of electrification in the near term, spurring significant research into biofuels. When coupled with carbon capture and storage, biofuels can achieve net-negative greenhouse gas emissions via many different conversion technologies such as fermentation, pyrolysis, or gasification to produce ethanol, gasoline, diesel, or jet fuel. However, each pathway has a different efficiency, capital and operating costs, and potential for carbon capture, making the optimal pathway dependent on policy and spatial factors. We use the Integrated Markal-EFOM System model applied to the USA, adding a rich suite of biofuel and carbon capture technologies, region-specific CO2 transportation and injection costs, and government incentives from the Inflation Reduction Act. We find that under current government incentives, biofuels and carbon capture from biorefineries are primarily focused in the Midwest and South of the USA, but play a relatively small role in the overall USA transportation sector even in 2055. However, increased government incentives, biomass availability, or oil price could lead to increased biofuel production and reduced transportation emissions.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3