Affiliation:
1. University of Connecticut, Department of Chemical and Biomolecular Engineering, Storrs, CT, USA
Abstract
Chemical looping Reforming (CLR) is seen as a promising technology for blue hydrogen production. With proper control, CLR in fixed bed reactors has demonstrated the capability to generate blue hydrogen and nitrogen from a single reactor. To enhance efficiency and H2 purity in the product stream, integration of a CLR reactor with a heat recovery system and a Shift reactor is essential. This study explores the design and control of an integrated CLR-Shift reactors system. The integrated system yields a product stream with 75% H2 mole fraction during the Reforming step of CLR, and a nitrogen with high purity (98%) during the Oxidation step. In the best-case scenario, the integrated system produces H2 and N2 at a molar ratio of 1.26 with H2 production efficiency of 80.1%.