Optimization of Retrofit Decarbonization in Oil Refineries

Author:

Chattopadhyay Sampriti1,Gandhi Rahul2,Grossmann Ignacio E.1,Torres. Ana I.1

Affiliation:

1. Carnegie Mellon University, Department of Chemical Engineering, Pittsburgh, PA, USA

2. Shell, USA

Abstract

The chemical industry is actively pursuing energy transition and decarbonization through renewables and other decarbonization initiatives. However, navigating this transition is challenging due to uncertainties in capital investments, electricity costs, and carbon taxes. Adapting to decarbonization standards while preserving existing valuable infrastructure presents a dilemma. Early transitions may lead to inefficiencies, while delays increase the carbon footprint. This research proposes a framework to find an optimal retrofit decarbonization strategy for existing oil refineries. We start with a generic process flowsheet representing the refinery's current configuration and operations, and consider various decarbonization alternatives. Through superstructure optimization, we identify the most cost-effective retrofit strategy over the next three decades to achieve decarbonization goals. We develop a Mixed-Integer Linear Programming (MILP) model, integrating simplified process equations and logical constraints to identify the most economical retrofit decarbonization strategy. The paper presents numerical results from the MILP model. Furthermore, the trends exhibited by the outcomes across various scenarios considering distinct electricity costs and carbon tax levels are presented. These results provide valuable insights into the economic feasibility of retrofit electrification strategies for decision-makers in the chemical industry.

Publisher

PSE Press

Reference33 articles.

1. "Is Carbon Capture Too Expensive - Analysis - IEA." n.d. Adam Baylin-Stern, Niels Berghout https://www.iea.org/commentaries/is-carbon-capture-too-expensive.

2. "U.S. Energy Information Administration - EIA - Independent Statistics and Analysis." n.d. https://www.eia.gov/outlooks/aeo/data/browser/#/?id=1-AEO2023®ion=0-0&cases=ref2023&start=2021&end=2050&f=A&linechart=~ref2023-d020623a.44-1-AEO2023&map=&ctype=linechart&sid=ref2023-d020623a.44-1-AEO2023&sourcekey=0

3. IEA greenhouse gas R&D programme. "Understanding the Cost of Retrofitting CO2 Capture in an Integrated Oil Refinery." SINTEF. www.sintef.no/recap. (2017)

4. The International Renewable Energy Agency, The International Renewable Energy. 2020. Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5�C climate goal. ISBN 9789292602956. www.irena.org/publications. (2020)

5. Birge, John R., and Fran�ois Louveaux. 1997. Introduction to stochastic programming. New York, NY, USA: Springer-Verlag, New York, NY, USA, (1997)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3