Conceptual Design of Integrated Energy Systems with Market Interaction Surrogate Models

Author:

Chen Xinhe1,Tumbalam-Gooty Radhakrishna23,Guittet Darice4,Knueven Bernard4,Siirola John D.5,Dowling Alexander W.1

Affiliation:

1. University of Notre Dame, Department of Chemical and Biomolecular Engineering, South Bend, IN 46556, United States

2. National Energy Technology Laboratory (NETL), Pittsburgh, PA 15236, United States

3. NETL Support Contractor, Pittsburgh, PA 15236, United States

4. National Renewable Energy Laboratory, Golden, CO 80401, United States

5. Sandia National Laboratories, Albuquerque, NM 87185, United States

Abstract

Most integrated energy system (IES) optimization frameworks employ the price-taker approximation, which ignores important interactions with the market and can result in overestimated economic values. In this work, we propose a machine learning surrogate-assisted optimization framework to quantify IES/market interactions and thus go beyond price-taker. We use time series clustering to generate representative IES operation profiles for the optimization problem and use machine learning surrogate models to predict the IES/market interaction. We quantify the accuracy of the time series clustering and surrogate models in a case study to optimally retrofit a nuclear power plant with a polymer electrolyte membrane electrolyzer to co-produce electricity and hydrogen.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3