Industrial Biosolids from Waste to Energy: Development of Robust Model for Optimal Conversion Route � Case Study

Author:

Elfaki Hesan1,Al-Mohannadi Dhabia M.2

Affiliation:

1. Texas A&M University, Texas Sea Grant College Program, College Station, Texas, United States

2. Texas A&M University at Qatar, Chemical Engineering Program, Education City, Doha, Qatar

Abstract

Utilizing sustainable energy sources is crucial for expanding the range of solutions available to meet the growing energy demand and reducing reliance on environmentally damaging and depleting conventional fuels. Biosolids, a type of biomass, are generated as secondary effluent during wastewater treatment process in municipal and industrial sites. These solids possess the potential to serve as a sustainable energy source due to their richness of carbon. For an extended period, biosolids have been landfilled, even though it can be considered a wasteful use of a precious resource and a possible mean for contamination to the food supply chain. This has served as an extra impetus to investigate the potential for harnessing the capabilities of these substances. While many research studies have looked at different ways to put biomass waste to use, very little has been written on biosolids, especially those derived from industrial sources. This research assesses the feasibility of transforming GTL derived biosolids into value-added commodities that can serve as raw materials in chemical manufacturing or be employed energy generation. The study primarily examines widely recognized thermal conversion processes, pyrolysis and gasification. An evaluation is carried out to analyze the economic, technological, and environmental aspects of the treatment methods utilizing these technologies. The aim is to demonstrate the potential of GTL biosolids conversion and to determine associated costs and environmental impacts. The ASPEN simulation tool is utilized to model thermal treatment pathways, allowing for the generation of economic and environmental estimations for each route.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3