Machine Learning-Aided Process Design for Microwave-Assisted Ammonia Production

Author:

Masud Md Abdullah Al1,Araia Alazar1,Wang Yuxin1,Hu Jianli1,Tian Yuhe1

Affiliation:

1. West Virginia University, Department of Chemical and Biomedical Engineering, Morgantown, West Virginia, USA

Abstract

Machine learning (ML) has become a powerful tool to analyze complex relationships between multiple variables and to unravel valuable information from big datasets. However, an open research question lies in how ML can accelerate the design and optimization of processes in the early experimental development stages with limited data. In this work, we investigate the ML-aided process design of a microwave reactor for ammonia production with exceedingly little experimental data. We propose an integrated approach of synthetic minority oversampling technique (SMOTE) regression combined with neural networks to quantitatively design and optimize the microwave reactor. To address the limited data challenge, SMOTE is applied to generate synthetic data based on experimental data at different reaction conditions. Neural network has been demonstrated to effectively capture the nonlinear relationships between input features and target outputs. The softplus activation function is used for a smoother prediction compared to the Rectified Linear Unit activation function. Ammonia concentration is predicted using pressure, temperature, feed flow rate, and feed composition ratio as input variables. For point-wise prediction based on discrete operating conditions, the proposed SMOTE integrated neural network approach outperforms with 96.1% accuracy compared to neural networks (without SMOTE), support vector regression, and linear regression. The multi-variate prediction trends are also validated which are critical for design optimization.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3