Sustainable Aviation Fuels (SAF) from Ethanol: An Integrated Systems Modeling Approach

Author:

Watson Madelynn J.1,Silva Aline V. da2,Machado Pedro G.3,Ribeiro Celma O.3,Nascimento Cl�udio A.O.4,Dowling Alexander W.1

Affiliation:

1. University of Notre Dame, Department of Chemical and Biomolecular Engineering, Notre Dame, IN, US

2. Universidade Estadual de Campinas, Institute of Economics, Campinas, SP, Brazil

3. University of S�o Paulo, Industrial Engineering Department, S�o Paulo, SP, Brazil

4. University of S�o Paulo, Chemical Engineering Department, S�o Paulo, SP, Brazil

Abstract

This work explores the economic and environmental opportunities for sustainable aviation fuel (SAF) in the Brazilian sugarcane industry. Brazil was one of the first countries to use biomass fuels for transportation and is currently the 2nd largest producer of the world�s bioethanol. Bioethanol produced from sugarcane can be upgraded to SAF via the American Society for Testing and Materials (ASTM)-certified pathway alcohol-to-jet (ATJ); however, at least two challenges exist for commercial implementation. First, technologies to produce bio-jet fuels cost more than their conventional fossil-based counterparts. Second, there is considerable uncertainty regarding returns on investment as the sugar and ethanol markets have been historically volatile. As such, we propose a new optimization model to inform risk-conscious investment decisions on SAF production capacity in sugarcane mills. Specifically, we propose a linear program (LP) to model an integrated sugarcane mill that can produce sugar, ethanol, or SAF. Then, using historical price data as scenarios, we determine optimal operation at different market scenarios. Based on the relationship between ethanol, sugar, and SAF prices, we show that the integrated sugarcane mill operates in four production regions. Furthermore, through sensitivity studies, we quantify the impact of SAF prices showing a premium SAF price of 2 $ L-1 results in 100% of scenarios favoring SAF production. These results allow us to guide SAF buyers or policymakers by showing the price point for SAF to become attractive for sugarcane mill integration.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3