Spatial distribution of fishing intensity of canvas stow net fishing vessels in the East China Sea and the Yellow Sea

Author:

Pei Kaiyang,Zhang Jiaze,Zhang Shengmao,Yanming Sui ,Zhang Heng,Tang Fenghua,Yang Shenglong

Abstract

 Present study used the position data of BeiDou Vessel Monitoring System (VMS) in 2018, with respect to motorised fishingvessels in the East China Sea and the Yellow Sea to construct a fishing vessel operating status classification model based onthreshold, deep neural network and DBSCAN density clustering algorithm. The geographic grid was divided into cells of0.1°×0.1° and the average fishing time per square km (h km-2) in each grid was calculated to obtain the spatial distributionof fishing intensity in the study region in 2018. The results showed that the threshold method could classify fishing vesselsailing, anchoring and other states with an accuracy of more than 95%. The deep neural network and DBSCAN algorithmcould classify the two states of netting and closing with an accuracy of 94.7%. By classifying the status of fishing vessels,quantitative monitoring can be carried out to better serve the management of marine fishery resources and marine ecologicalprotectionKeywords: China, DBSCAN, Deep neural network, Fishing intensity, Spatial distribution, VMS, Voyage extraction

Publisher

Central Marine Fisheries Research Institute, Kochi

Subject

Aquatic Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3