Research on Optimization of Boundary Detection and Dangerous Area Warning Algorithms Based on Deep Learning in Campus Security System

Author:

Zhong Baitong12,Sharif Johan Bin Mohamad1,Ran Chengke2,Liang Yizhou3,Cheng Zijun4

Affiliation:

1. Lecturer, College of Information Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

2. Lecturer, College of Information Engineering, Hunan Mechanical Electrical Polytechnic, Changsha, China

3. Lecturer, School of Computer Science and Engineering, Central South University, Changsha, China

4. Lecturer, Changde City Economic Construction Investment Group Co., LTD, Changde, China

Abstract

This study designs and implements a boundary detection and dangerous area warning algorithm based on deep learning from the perspective of typified campus security situation resources such as data, information, and knowledge. Based on integrating multiple campus security factors, real-time perception and further prediction of campus security situation can be achieved. Through coordinated operation among various algorithm modules, object intrusion in specific areas can be accurately identified and early warning can be given. The research results show that when an object invades a specific area, the difference coefficient will increase, and the larger the change value in the intrusion area, the larger the corresponding difference coefficient. By using this feature, the threshold of the difference coefficient can be determined. When a region is invaded, the contour length of the foreground will sharply increase. Based on the statistical information of the contour length of the foreground, the threshold can be set to determine whether someone has invaded the region. The deep learning algorithm in this study accurately extracts the contour of moving targets and can identify foreground targets. The real-time performance of the algorithm is also guaranteed, and it has high practical value in intelligent video monitoring. This algorithm greatly improves the efficiency of intrusion detection by utilizing the joint constraints of two types of time-domain and scene-space transformations in monitoring images. This method is not affected by the brightness of the regional environment, nor will it cause misjudgment due to significant differences in brightness of the regional environment. The detection and inference time of deep learning-based detection methods is controlled within 2-3ms, and the FPS value of the detection method is always at a high level, which can quickly increase to over 350frames/s after transmission begins. The detection method based on deep learning has higher detection efficiency.

Publisher

International Association for Digital Transformation and Technological Innovation

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3