DIGITAL INNOVATIONS IN GRAIN PRODUCTION: METHODOLOGICAL PRINCIPLES OF USING ARTIFICIAL INTELLIGENCE TECHNOLOGIES

Author:

Arinichev Igor1

Affiliation:

1. Kuban State University

Abstract

The paper discusses an innovative approach to monitoring grain ecosystems, based on the use of neural network technologies. A classification of the tasks of monitoring the phytosanitary condition of crops in a grain field has been carried out, and the corresponding intellectualization tools have been identified. The main attention is paid to the problems of detection, classification and development of diseases in crops, for the effective solution of which it is proposed to use computer vision methods, including a complex of convolutional architectures GoogleNet, DenseNet, U-Net, which have shown high performance in classification and segmentation problems on test samples of images of wheat diseases, obtained as a result of three years of field experiments in the Krasnodar Region. The results of the study show that the use of neural network methods in the process of monitoring grain ecosystems contributes to the effective solution of complex problems associated with diagnostic procedures, allowing to reduce the level of uncertainty in the decision-making process, which is especially important under the influence of environmental factors with a high level of randomness and variability. The main barrier to the intellectualization of production processes is the lack of methodology for working with artificial intelligence, big data and other digital technologies at different levels of management in the agricultural sector of the economy, which affects not only issues of technical implementation and implementation of artificial intelligence, but also organizational aspects, including work with data, staffing the intellectualization process, information infrastructure, defining the roles and responsibilities of participants in the process, as well as the integration of intelligent solutions with the agricultural solutions module of the national platform “Digital Agriculture”.

Publisher

Krasnoyarsk State Agrarian University

Reference9 articles.

1. Национальная программа «Цифровая экономика Российской Федерации», утвержденная протоколом заседания президиума Совета при Президенте Российской Федерации по стратегическому развитию и национальным проектам от 4 июня 2019 г. № 7. URL: https://www.consultant.ru/document/ cons_doc_LAW_328854., Nacional'naya programma «Cifrovaya ekonomika Rossiyskoy Federacii», utverzhdennaya protokolom zasedaniya prezidiuma Soveta pri Prezidente Rossiyskoy Federacii po strategicheskomu razvitiyu i nacional'nym proektam ot 4 iyunya 2019 g. № 7. URL: https://www.consultant.ru/document/ cons_doc_LAW_328854.

2. Индикаторы цифровой экономики: 2022: ст. сб. / Г.И. Абдрахманова, С.А. Васильковский, К.О. Вишневский [и др.]; Нац. исслед. ун-т «Высшая школа экономики». М.: НИУ ВШЭ, 2023. 332 с., Indikatory cifrovoy ekonomiki: 2022: st. sb. / G.I. Abdrahmanova, S.A. Vasil'kovskiy, K.O. Vishnevskiy [i dr.]; Nac. issled. un-t «Vysshaya shkola ekonomiki». M.: NIU VShE, 2023. 332 s.

3. Цифровая экономика: 2023: ст. сб. / Г.И. Абдрахманова, С.А. Васильковский, К.О. Вишневский [и др.]; Нац. исслед. ун-т «Высшая школа экономики». М.: НИУ ВШЭ, 2023. 120 с., Cifrovaya ekonomika: 2023: st. sb. / G.I. Abdrahmanova, S.A. Vasil'kovskiy, K.O. Vishnevskiy [i dr.]; Nac. issled. un-t «Vysshaya shkola ekonomiki». M.: NIU VShE, 2023. 120 s.

4. Ариничев И.В., Сидоров В.А., Ариничева И.В. Интеллектуальные технологии фитосанитарной диагностики экосистем: нейросетевой подход // Труды Кубанского государственного аграрного университета. 2022. № 99. С. 66–70., Arinichev I.V., Sidorov V.A., Arinicheva I.V. Intellektual'nye tehnologii fitosanitarnoy diagnostiki ekosistem: neyrosetevoy podhod // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2022. № 99. S. 66–70.

5. Deep learning for plant diseases: detection and daliency map visualization / M. Brahimi, M. Arsenovic, S. Sladojevic [et al.] // Human and Machine Learning. 2018. P. 93–117., Deep learning for plant diseases: detection and daliency map visualization / M. Brahimi, M. Arsenovic, S. Sladojevic [et al.] // Human and Machine Learning. 2018. P. 93–117.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3