Decentralized-Hierarchical Control Approach to Automatic Train Protection (ATP) of Communication-Based Train Control (CBTC)

Author:

ATILGAN Cem1,KAYMAKÇI Özgür Turay2,MUMCU Tarık Veli3

Affiliation:

1. KIRKLARELİ ÜNİVERSİTESİ

2. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

3. İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA

Abstract

With urbanization, the number of people living in metropolises is increasing, parallel to population growth, the demand for rail transportation systems, which has a very important place in urban transportation, is increasing day by day in populous cities. The traffic density, which will increase in parallel with the increasing demand on rail, makes the signal systems very important in terms of their impact on rail safety, capacity and efficiency. Today, communication-based train control (CBTC) is the preferred signaling system in many rail transportation systems. CBTC consists of some subsystems such as Automatic Train Protection (ATP), Automatic Train Control (ATS) and Automatic Train Operation (ATO). The subsystems have some specific, defined tasks. In performing these tasks, it is expected that the desired safety functions will be implemented with the highest level of confidence without being compromised by the increasing requirements from the subsystems. Nevertheless, the overall design of these systems may require to be modified to meet the new necessities. In this case, it is of great importance to control and model the subsystems while considering different standards. In this study, the subsystem of CBTC, ATP, is modeled with finite state automata with the discrete event system approach, and the supervisory watchers of the subsystems are designed, shown to satisfy the controllability and nonlocking conditions, and the obtained results are matched with the model of the monolithic approach.

Publisher

Demiryolu Muhendisligi Dergisi, Demiryolu Muhendisleri Dernegi

Subject

Energy Engineering and Power Technology,Fuel Technology

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3