Numerical Modeling of Flow Pattern at a Right-angled River Bend Using CCHE2D Model

Author:

Das Animesh,Biswal Sushant KumarORCID

Abstract

In this study, the CCHE2D model is used to analyse the flow pattern in a meander reach of the Gomati River. The finite volume method is used by the numerical model to solve the depth-averaged two-dimensional equations with 𝑘−𝜀turbulence closure. The numerical findings were compared with field data for two different flow rates in order to calibrate the CCHE2D model using various Manning's roughness coefficients. The results show that for the minimum and maximum discharges, a smaller Manning's roughness factor (0.015≥𝑛≥0.025)is more favorableto a higher Manning's roughness factor(0.030≤𝑛≤0.040). The results of the numerical model demonstrated that fluctuations in hydraulic parameters including shear stress, velocity, flow depth, and Froude number in the river bend are greatly influenced by the existence of centrifugal force and helical cells. The linear relationship between velocity and shear stress is presented across the whole study reach, as indicated by the R-squareand linear correlation coefficient (r) components. The results of the model show that the flow field within the river bend can be accurately simulated by the computational model.

Publisher

Izmir UOD

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3