Multicriteria shape design of a sheet contour in stamping

Author:

Oujebbour Fatima-Zahra1,Habbal Abderrahmane12,Ellaia Rachid3,Zhao Ziheng1

Affiliation:

1. INRIA Sophia Antipolis, OPALE Project Team, 2004 Route des Lucioles, 06902 Sophia Antipolis, France

2. University Nice Sophia Antipolis, Mathematics Dept, 28 Avenue de Valrose, 06103 Nice Cedex 2, France

3. Mohammed V - Agdal University, LERMA, Mohammadia School of Engineering, Rabat, Morocco

Abstract

Abstract One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of multiple contact interaction of elements of shearing dies;Eastern-European Journal of Enterprise Technologies;2019-07-24

2. Visualization and analysis of regions of monotonic curvature for interpolating segments of extended sectrices of Maclaurin;Computer Aided Geometric Design;2017-08

3. Fluid Genetic Algorithm (FGA);Journal of Computational Design and Engineering;2017-03-09

4. Robust parameter optimization based on multivariate normal boundary intersection;Computers & Industrial Engineering;2016-03

5. Development of infrared staking process for an automotive part;IOP Conference Series: Materials Science and Engineering;2015-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3