Classification of surface water objects in visible spectrum images

Author:

Artemyev A. A.1,Kazachkov E. A.1,Matyugin S. N.1,Sharonov V. V.1

Affiliation:

1. Scientific Research Institute of Radio Engineering, JSC

Abstract

This paper considers the problem of classifying surface water objects, e.g. ships of different classes, in visible spectrum images using convolutional neural networks. A technique for forming a database of images of surface water objects and a special training dataset for creating a classification are presented. A method for forming and training of a convolutional neural network is described. The dependence of the probability of correct recognition on the number and variants of the selection of specific classes of surface water objects is analysed. The results of recognizing different sets of classes are presented.

Publisher

Almaz-Antei Air and Space Defence Corporation

Reference16 articles.

1. Gouaillier V., Gagnon L. Ship silhouette recognition using principal components analysis // Applications of Digital Image Processing XX. 1997. Vol. 3164. P. 59–70.

2. Feineigle P. A., Morris D. D., Snyder F. D. Ship recognition using optical imagery for harbor surveillance // Proceedings of Association for Unmanned Vehicle Systems International (AUVSI). 2007. P. 1–17.

3. Li H., Wang X. Automatic recognition of ship types from infrared images using support vector machines // International Conference on Computer Science and Software Engineering. 2008. Vol. 6. P. 483–486.

4. Rainey K., Reeder J. D., Corelli A. G. Convolution neural networks for ship type recognition // Proceedings of the SPIE Defense + Security. Vol. 9844: “Automatic Target Recognition XXVI”. 2016. 984409. DOI: 10.1117/12.2229366

5. Kazachkov E. A., Matyugin S. N., Popov I. V., Sharonov V. V. Obnaruzhenie i klassifikatsiya malorazmernykh ob\"ektov na izobrazheniyakh, poluchennykh radiolokatsionnymi stantsiyami s sintezirovannoi aperturoi // Vestnik kontserna VKO «Almaz – Antei». 2018. № 1. S. 93–99.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3