Affiliation:
1. Scientific Research Institute of Radio Engineering, JSC
Abstract
This paper considers the problem of classifying surface water objects, e.g. ships of different classes, in visible spectrum images using convolutional neural networks. A technique for forming a database of images of surface water objects and a special training dataset for creating a classification are presented. A method for forming and training of a convolutional neural network is described. The dependence of the probability of correct recognition on the number and variants of the selection of specific classes of surface water objects is analysed. The results of recognizing different sets of classes are presented.
Publisher
Almaz-Antei Air and Space Defence Corporation
Reference16 articles.
1. Gouaillier V., Gagnon L. Ship silhouette recognition using principal components analysis // Applications of Digital Image Processing XX. 1997. Vol. 3164. P. 59–70.
2. Feineigle P. A., Morris D. D., Snyder F. D. Ship recognition using optical imagery for harbor surveillance // Proceedings of Association for Unmanned Vehicle Systems International (AUVSI). 2007. P. 1–17.
3. Li H., Wang X. Automatic recognition of ship types from infrared images using support vector machines // International Conference on Computer Science and Software Engineering. 2008. Vol. 6. P. 483–486.
4. Rainey K., Reeder J. D., Corelli A. G. Convolution neural networks for ship type recognition // Proceedings of the SPIE Defense + Security. Vol. 9844: “Automatic Target Recognition XXVI”. 2016. 984409. DOI: 10.1117/12.2229366
5. Kazachkov E. A., Matyugin S. N., Popov I. V., Sharonov V. V. Obnaruzhenie i klassifikatsiya malorazmernykh ob\"ektov na izobrazheniyakh, poluchennykh radiolokatsionnymi stantsiyami s sintezirovannoi aperturoi // Vestnik kontserna VKO «Almaz – Antei». 2018. № 1. S. 93–99.