Comparison of maximum likelihood estimators and regression models for burn severity mapping in Mediterranean forests using Landsat TM and ETM+ data

Author:

Ariza Alexander,Salas Rey Javier,Merino de Miguel Silvia

Abstract

Durante la última década, ha habido un número creciente de trabajos publicados sobre la gravedad de los incendios forestales utilizando datos de teledetección para fines de gestión de recursos naturales y de investigación. Muchos de estos estudios cuantifican los cambios entre las condiciones de vegetación antes y después del incendio a partir de imágenes satelitales utilizando índices espectrales; sin embargo, hay una discusión activa sobre cuál de los índices más comúnmente usados es más adecuado para estimar la severidad de la quemadura, y qué metodología es la mejor para la estimación de los niveles de severidad. Este estudio propone y evalúa un algoritmo de aprendizaje automático de Estimación de Máxima Verosimilitud (EMV) para mapear la severidad de las quemaduras como una alternativa a los modelos de regresión.Desarrollamos ambos métodos usando datos de campo de GeoCBI (Índice Compuesto de Quema Geométricamente Estructurado, siglas en inglés) y seis índices espectrales diferentes (derivados de imágenes Landsat TM y ETM+) para dos incendios forestales en el centro de España. Comparamos la capacidad para discriminar la severidad de la quemadura de estos índices a través de un índice de separabilidad espectral (M), y evaluamos su concordancia con datos de campo basados en GeoCBI usando el coeficiente de determinación (R2). Posteriormente, el índice seleccionado se utilizó para los modelos de regresión y la EMV para estimar los niveles de severidad de quema (sin quemar, bajo, moderado y alto), y se validó con datos de campo. El índice RBR mostró una mejor separabilidad espectral (promedio entre dos fuegos M= 2.00) que el dNBR (M= 1.82) y RdNBR (M= 1.80). Además, GeoCBI tuvo un mayor ajuste con RBR (R2= 0.73) que con RdNBR (R2= 0.72) y dNBR (R2= 0.71).Finalmente, la EMV mostró la mayor precisión de clasificación general (Kappa=0,65) y la mejor precisión para cada clase individual.

Publisher

Instituto Panamericano de Geografia e Historia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3