A STUDY OF UNMANNED GLIDER DESIGN, SIMULATION, AND MANUFACTURING

Author:

Demircali Anil,Uvet Huseyin

Abstract

This paper describes a mini unmanned glider's design, simulation, and manufacturing with a wing-folding mechanism. The mini-glider is designed for the CANSAT 2016 competition, which has the theme of a Mars glider concept with atmosphere data acquisition. The aim is to facilitate transportation and to land it to the destination point. Having a light and compact design is important since it is a glider without an engine and it uses power only for the transmission of sensory data. The glider is produced with a wingspan which is 440 mm, and its longitudinal distance is 304 mm. The wings can be packaged in a fixed size container whose dimensions are 125 mm in diameter and 310 mm in height. The glider's weight is only 144 gr, and it can increase up to 500 gr with maximum with payload. The mechanism, which includes springs and neodymium magnets for wing-folding, is capable of being ready in 98 ms for gliding after separation from its container. The mini-glider is capable of telemetry, communications, and other sensory operations autonomously during flight.

Publisher

CBU Research Institute

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3