Zinc Supplementation Effect on the Bronchial Cilia Length, the Number of Cilia, and the Number of Intact Bronchial Cell in Zinc Deficiency Rats

Author:

Darma Andy,Athiyyah Alpha Fardah,Ranuh Reza Gunadi,Merbawani Wiweka,Setyoningrum Retno Asih,Hidajat Boerhan,Hidayati Siti Nurul,Endaryanto Anang,Sudarmo Subijanto Marto

Abstract

BACKGROUND: Airway epithelium is the first line of defense against a variety of exposures. Inflammatory processes, hyperresponsiveness and zinc deficiency cause epithelial damage. Zinc is involved in apoptosis and microtubule formation. However, its role in the integrity of bronchial mucosa and cilia is unclear.METHODS: To assess the effect of zinc on the integrity of the bronchial epithelium, 24 male Rattus norvegicus strain Wistar rats were randomized into four experimental groups: normal zinc diet group without zinc supplementation, normal zinc diet group with 60 ppm zinc supplementation, zinc deficient diet group without zinc supplementation, and zinc deficient diet group with 120 ppm zinc supplementation. Bronchial mucosal integrity was measured with the number of epithelial cells, and the number and length of cilia.RESULTS: Number of cell in normal zinc diet group was 8.8±1.82, while it was only 8.1±1.08 in zinc deficient diet group (p<0.001). Number of cilia per cell was 4.6±1.08 in normal zinc diet group, compared to 4.0±0.79 in zinc deficient diet group (p<0.001). Ciliary length also differ by 7.68±0.66 μm in normal zinc diet group and only 5.16±0.91 μm in zinc deficient diet group (p<0.001).CONCLUSION: Zinc supplementation of the normal zinc diet group affected the length of bronchial cilia. Zinc supplementation of the zinc deficient diet group affected the integrity of the bronchial epithelium, which was shown by the number and length of cilia, and the number of epithelial cells.KEYWORDS: zinc, bronchial epithelial integrity, cilia length, number of cilia, epithelial cell 

Publisher

Secretariat of The Indonesian Biomedical Journal

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3