Achatina fulica Mucus Ameliorates UVB-induced Human Dermal Fibroblast Photoaging via the TGF-β/Smad Pathway

Author:

Nuryana Christiana TriORCID,Agustin Tiara Puspita,Haryana Sofia Mubarika,Wirohadidjojo Yohanes Widodo,Arfian Nur

Abstract

BACKGROUND: Ultraviolet B (UVB) induces skin photoaging by reducing collagen deposition via impairment of the TGF-β/Smad signaling pathway. Achatina fulica mucus (AFM) is a native medicine acting as vehicle of anti-aging ingredients. The present investigation examined the effect of AFM on UVB-induced fibroblast photoaging by assessing TGF-β, Smad3, and Smad7 mRNA expressions.METHODS: AFM was extracted from A. fulica using electrical shock and freeze-dried into a powder. Normal human dermal fibroblast (NHDF) cultures were irradiated with/without 100 mJ/cm2 UVB and treated with/without 10% platelet-rich plasma or different concentrations of AFM: 3.9 μg/mL in AF3 group; 15.625 μg/mL in AF15 group, and 62.5 μg/mL in AF62 group. The mRNA expressions of TGF-β, Smad3, and Smad7 in NHDF were evaluated by quantitative polymerase chain reaction.RESULTS: TGF-β mRNA expressions in the AF3 (0.85±0.01), AF15 (0.94±0.02) and AF62 (1.64±0.03) groups were significantly higher (p<0.05) compared with that in the UVB group (0.55±0.04). Moreover, Smad3 expressions in the AF3 (1.42±0.25), AF15 (1.89±0.13), and AF62 (2.50±0.31) groups were significantly higher (p<0.05) compared with that in the UVB group (0.57±0.08). Furthermore, Smad7 expressions in the AF3 (1.57±0.18), AF15 (0.87±0.03), and AF62 (0.25±0.09) groups were significantly lower (p<0.05) than that in the UVB group (2.57±0.06).CONCLUSION: AFM ameliorates UVB-induced fibroblast photoaging by upregulating the TGF-β/Smad3 expressions and downregulating Smad7 expression.KEYWORDS: Achatina fulica, TGF-β, Smad, collagen, UVB, fibroblast, photoaging

Publisher

Secretariat of The Indonesian Biomedical Journal

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3