Modeling and Predicting Deterioration of Concrete Bridge Elements Using Machine Learning

Author:

Ghafoori Mahdi123,Abdallah Moatassem123,Egemen Ozbek Mehmet123

Affiliation:

1. Assistant Professor, Dept. of Building Construction Science, Mississippi State Univ., Starkville, MS.

2. Associate Professor, Dept. of Civil Engineering, Univ. of Colorado Denver, Denver, CO.

3. Professor and Joseph Phelps Endowed Chair, Dept. of Construction Management, Colorado State Univ., Fort Collins, CO.

Publisher

American Society of Civil Engineers

Reference14 articles.

1. Data-driven prediction of long-term deterioration of RC bridges;Alonso Medina P.;Construction and Building Materials,2022

2. Developing Bridge Deterioration Models Using an Artificial Neural Network;Althaqafi E.;Infrastructures,2022

3. Evaluating Ecohydrological Model Sensitivity to Input Variability with an Information-Theory-Based Approach;Farahani M. A.;Entropy,2022

4. FHWA. (2018). FHWA Bridge Preservation Guide Maintaining a Resilient Infrastructure to Preserve Mobility Quality Assurance Statement.

5. Simulation-Based Optimization Model to Minimize Equivalent Annual Cost of Existing Buildings;Ghafoori M.;Journal of Construction Engineering and Management,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3