Automated Condition Assessment of Sanitary Sewer Pipes Using LiDAR Inspection Data
Author:
Affiliation:
1. Ph.D. Student, Dept. of Civil Engineering, Univ. of Texas at Arlington, Arlington, TX. ORCID: .
2. Assistant Professor, Dept. of Civil Engineering, Univ. of Texas at Arlington, Arlington, TX. ORCID: .
Publisher
American Society of Civil Engineers
Link
https://ascelibrary.org/doi/pdf/10.1061/9780784484289.016
Reference13 articles.
1. ASCE. (2021). Infrastructure Report Card. https://infrastructurereportcard.org/wp-content/uploads/2020/12/National_IRC_2021-report.pdf.
2. Pipe inspection using a laser-based transducer and automated analysis techniques
3. Ékes C. Neducza B. and Henrich G. R. (2011). “GPR Goes Underground: Pipe Penetrating Radar.” Proc. North American Society for Trenchless Technology (NASTT) No-Dig Show Washington D.C. March 27-31 Paper B-3-02.
4. Feng Z. Horoshenkov K. V. Bin Ali M. T. and Tait S. (2012). “An acoustic method for condition classification in live sewer networks.” 18th World Conference on Nondestructive Testing(WCNDT). Durban South Africa.
5. Kramer, O. (2013). “K-Nearest Neighbors.” In: Dimensionality Reduction with Unsupervised Nearest Neighbors. 51. Berlin, Heidelberg: Intelligent Systems Reference Library.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Risk Assessment of Infrastructure Using a Modified Adaptive Neurofuzzy System: Theoretical Application to Sewer Mains;Journal of Pipeline Systems Engineering and Practice;2024-05
2. 3D laser point cloud-based geometric digital twin for condition assessment of large diameter pipelines;Tunnelling and Underground Space Technology;2023-12
3. Deciphering and predict corrosion effect, influencing factors and microbial mechanism of sewer concrete corrosion based on extensive data analysis and machine learning;Urban Water Journal;2023-09-06
4. Investigation of KNN and Decision Tree Methods’ Efficiency in Developing Prediction Models for Sewer Pipes;Pipelines 2023;2023-08-10
5. Reliability Assessment of Reinforced Concrete Sewer Pipes under Adverse Environmental Conditions: Case Study for the City of Arlington, Texas;Journal of Pipeline Systems Engineering and Practice;2023-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3