Synthetic Image Data Generation for Semantic Understanding in Everchanging Scenes Using BIM and Unreal Engine
Author:
Affiliation:
1. Dept. of Civil and Environmental Engineering, Carnegie Mellon Univ., Pittsburgh, PA.
Publisher
American Society of Civil Engineers
Link
http://ascelibrary.org/doi/pdf/10.1061/9780784483893.115
Reference17 articles.
1. Scene understanding in construction and buildings using image processing methods: A comprehensive review and a case study.;Arashpour M.;Journal of Building Engineering,2021
2. Distortion-Free Image Mosaicing for Tunnel Inspection Based on Robust Cylindrical Surface Estimation through Structure from Motion
3. Cordts M. Omran M. Ramos S. Rehfeld T. Enzweiler M. Benenson R. Franke U. Roth S. and Schiele B. (2016). “The Cityscapes Dataset for Semantic Urban Scene Understanding.” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 3213–3223.
4. CSC CSI. (2010). UniFormat, A Uniform Classification of Construction Systems and Assemblies. 204.
5. Czerniawski T. and Leite F. (2018). “3DFacilities: annotated 3D reconstructions of building facilities.” Workshop of the European Group for Intelligent Computing in Engineering Springer Cham 186–200.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Requirements for Parametric Design of Physics-Based Synthetic Data Generation for Learning and Inference of Defect Conditions;Construction Research Congress 2024;2024-03-18
2. Synthetic images generation for semantic understanding in facility management;Construction Innovation;2023-02-28
3. Utilizing 360-Degree Images for Synthetic Data Generation in Construction Scenarios;Proceedings e report;2023
4. Utilizing 360-Degree Images for Synthetic Data Generation in Construction Scenarios;Proceedings e report;2023
5. Artificial intelligence in construction asset management: a review of present status, challenges and future opportunities;Journal of Information Technology in Construction;2022-10-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3