Study on Two-Dimensional Numerical Simulation of Rainstorm and Torrent in Small Watershed Based on Lidar Data

Author:

Kang Jian1,Wang Jianhua2,Ni Hongzhen3,Kang Putong4

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China; China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Development Research Center of the Ministry of Water Resources of PR China, No. 3, Yuyuantan South Rd., Haidian District, Beijing 100038, China.

2. Professor, State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China; China Institute of Water Resources and Hydropower Research, No. 1, Fuxing Rd., Haidian District, Beijing 100038, China.

3. Professor, State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China; China Institute of Water Resources and Hydropower Research, No. 1, Fuxing Rd., Haidian District, Beijing 100038, China (corresponding author).

4. Master, Mechanical Engineering and Materials Science, Duke Univ. Graduate School, 2127 Campus Dr., Durham, NC 27708.

Publisher

American Society of Civil Engineers (ASCE)

Subject

General Environmental Science,Water Science and Technology,Civil and Structural Engineering,Environmental Chemistry

Reference41 articles.

1. Impacts of land cover change on runoff based on grid-based Sacramento Model;Bai X. F.;Trans. Chin. Soc. Agric. Mach.,2017

2. Simulating floods in ephemeral streams in Southern Italy by full-2D hydraulic models

3. Dong J. B. L. Wang and Y. Liu. 2010. “Study on numerical simulation method of wave climb based on Godunov scheme and shallow water equation.” In Proc. 11th National Academic Conf. on Hydraulics and the 24th National Symp. on Hydraulics. Rowville Australia: Funtastic.

4. A two-dimensional hydrodynamic model for flood inundation simulation: a case study in the lower Mekong river basin

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3