Instance Segmentation of Industrial Point Cloud Data
Author:
Affiliation:
1. Innovation Lead, PTC Inc., 121 Seaport Blvd., Boston, MA 02210 (corresponding author). ORCID: .
2. Laing O’Rourke Reader, Dept. of Engineering, Univ. of Cambridge, Cambridge CB2 1PZ, UK. ORCID:
Publisher
American Society of Civil Engineers (ASCE)
Subject
Computer Science Applications,Civil and Structural Engineering
Link
http://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29CP.1943-5487.0000972
Reference65 articles.
1. Agapaki E. 2020. “Automated object segmentation in existing industrial facilities.” Ph.D. thesis Dept. of Engineering Univ. of Cambridge.
2. Agapaki E. and I. Brilakis. 2017. “Prioritising object types of industrial facilities to reduce as-is modelling time.” In Proc. 33rd Annual ARCOM Conf. 402–411. Glasgow UK: Association of Researchers in Construction Management.
3. State-of-Practice on As-Is Modelling of Industrial Facilities
4. CLOI-NET: Class segmentation of industrial facilities’ point cloud datasets
5. Agapaki E. A. Glyn-Davies S. Mandoki and I. Brilakis. 2019. “CLOI: A shape classification benchmark dataset for industrial facilities.” In Proc. 2019 ASCE Int. Conf. on Computing in Civil Engineering. Reston VA: ASCE.
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancements in point cloud-based 3D defect classification and segmentation for industrial systems: A comprehensive survey;Information Fusion;2024-12
2. Deep Learning–Based Scan-to-BIM Automation and Object Scope Expansion Using a Low-Cost 3D Scan Data;Journal of Computing in Civil Engineering;2024-11
3. Automated BIM-to-scan point cloud semantic segmentation using a domain adaptation network with hybrid attention and whitening (DawNet);Automation in Construction;2024-08
4. Comparative Evaluation of Deep Neural Network Performance for Point Cloud-Based IFC Object Classification;IEEE Access;2024
5. Activity-level construction progress monitoring through semantic segmentation of 3D-informed orthographic images;Automation in Construction;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3